Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(10): 2511-2522, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38334758

RESUMO

Photoacoustic (PA) imaging is an emerging diagnostic technology that combines the penetration depth of ultrasound (US) imaging and the contrast resolution of optical imaging. Although PA imaging can visualize several endogenous chromophores to obtain clinically-relevant information, multiple applications require the administration of external contrast agents. Metal phthalocyanines have strong PA properties and chemical stability, but their extreme hydrophobicity requires their encapsulation in delivery systems for biomedical applications. Hence, we developed hybrid US/PA contrast agents by encapsulating metal phthalocyanines in poly(butyl cyanoacrylate) microbubbles (PBCA MB), which display acoustic response and ability to efficiently load hydrophobic drugs. Six different metal chromophores were loaded in PBCA MB, showing greater encapsulation efficiency with higher chromophore hydrophobicity. Notably, while the US response of the MB was unaffected by the loading of the chromophores, the PA characteristics varied greatly. Among the different formulations, MB loaded with zinc and cobalt naphthalocyanines showed the strongest PA contrast, as a result of high encapsulation efficiencies and tunable optical properties. The strong US and PA contrast signals of the formulations were preserved in biological environment, as demonstrated by in vitro imaging in serum and whole blood, and ex vivo imaging in deceased mice. Taken together, these findings highlight the advantages of combining highly hydrophobic PA contrast agents and polymeric MB for the development of contrast agents for hybrid US/PA imaging, where different types of information (structural, functional, or potentially molecular) can be acquired by combining both imaging modalities.


Assuntos
Meios de Contraste , Microbolhas , Camundongos , Animais , Ultrassonografia/métodos , Polímeros/química , Imagem Multimodal
2.
Biomater Adv ; 158: 213759, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38227987

RESUMO

While microbubbles (MB) are routinely used for ultrasound (US) imaging, magnetic MB are increasingly explored as they can be guided to specific sites of interest by applied magnetic field gradient. This requires the MB shell composition tuning to prolong MB stability and provide functionalization capabilities with magnetic nanoparticles. Hence, we developed air-filled MB stabilized by a protein-polymer complex of bovine serum albumin (BSA) and poly-L-arginine (pArg) of different molecular weights, showing that pArg of moderate molecular weight distribution (15-70 kDa) enabled MB with greater stability and acoustic response while preserving MB narrow diameters and the relative viability of THP-1 cells after 48 h of incubation. After MB functionalization with superparamagnetic iron oxide nanoparticles (SPION), magnetic moment values provided by single MB confirmed the sufficient SPION deposition onto BSA + pArg MB shells. During MB magnetic navigation in a blood vessel mimicking phantom with magnetic tweezers and in a Petri dish with adherent mouse renal carcinoma cell line, we demonstrated the effectiveness of magnetic MB localization in the desired area by magnetic field gradient. Magnetic MB co-localization with cells was further exploited for effective doxorubicin delivery with drug-loaded MB. Taken together, these findings open new avenues in control over albumin MB properties and magnetic navigation of SPION-loaded MB, which can envisage their applications in diagnostic and therapeutic needs.


Assuntos
Nanopartículas de Magnetita , Peptídeos , Camundongos , Animais , Nanopartículas de Magnetita/uso terapêutico , Microbolhas , Soroalbumina Bovina , Nanopartículas Magnéticas de Óxido de Ferro
3.
Colloids Surf B Biointerfaces ; 234: 113705, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38194837

RESUMO

Hollow-core microstructured optical waveguides (HC-MOW) have recently emerged in sensing technologies, including the gas and liquid detection for industrial as well as clinical applications. Antiresonant HC-MOW provide capabilities for applications in refractive index (RI) sensing, while the long optical path for analyte-light interaction in HC-MOW leads to increased sensitivity of sensor based on Raman scattering signal measurements. In this study, we developed a two-in-one sensor device using HC-MOW for RI and Raman scattering detection. The performance of the sensor was evaluated by characterizing protein-copolymer multicomponent colloids, specifically, bovine serum albumin (BSA) and poly(N - vinyl-2 -pyrrolidone-co-acrylic acid) P(VP-AA) nano-sized complexes and microbubbles of the corresponding shell. Monocomponent solutions showed linear dependencies of RI and characteristic Raman peak intensities on mass concentration. Multicomponent Raman sensing of BSA@P(VP-AA) complexes and microbubbles revealed that changes in P(VP-AA) characteristic peak intensities can describe interactions between components needed to produce colloid systems. RI sensing of multicomponent colloids demonstrated linear dependence on total mass concentrations for BSA@P(VP-AA) complexes, while corresponding BSA@P(VP-AA) microbubbles can be detected with concentrations as high as 4.0 × 108 MB/mL. Therefore, the developed two-in-one sensor of RI and Raman scattering can be used the robust characterization of albumin-based colloids designed for therapeutic and diagnostic needs.


Assuntos
Refratometria , Análise Espectral Raman , Coloides
4.
Chem Sci ; 14(43): 11941-11954, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37969594

RESUMO

Ultrasound (US) is routinely used for diagnostic imaging and increasingly employed for therapeutic applications. Materials that act as cavitation nuclei can improve the resolution of US imaging, and facilitate therapeutic US procedures by promoting local drug delivery or allowing temporary biological barrier opening at moderate acoustic powers. Polymeric materials offer a high degree of control over physicochemical features concerning responsiveness to US, e.g. via tuning chain composition, length and rigidity. This level of control cannot be achieved by materials made of lipids or proteins. In this perspective, we present key engineered polymeric materials that respond to US, including microbubbles, gas-stabilizing nanocups, microcapsules and gas-releasing nanoparticles, and discuss their formulation aspects as well as their principles of US responsiveness. Focusing on microbubbles as the most common US-responsive polymeric materials, we further evaluate the available chemical toolbox to engineer polymer shell properties and enhance their performance in US imaging and US-mediated drug delivery. Additionally, we summarize emerging applications of polymeric microbubbles in molecular imaging, sonopermeation, and gas and drug delivery, based on refinement of MB shell properties. Altogether, this manuscript provides new perspectives on US-responsive polymeric designs, envisaging their current and future applications in US imaging and therapy.

5.
Adv Mater ; 35(52): e2308150, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949438

RESUMO

Microbubbles (MB) are widely used for ultrasound (US) imaging and drug delivery. MB are typically spherically shaped, due to surface tension. When heated above their glass transition temperature, polymer-based MB can be mechanically stretched to obtain an anisotropic shape, endowing them with unique features for US-mediated blood-brain barrier (BBB) permeation. It is here shown that nonspherical MB can be surface-modified with BBB-specific targeting ligands, thereby promoting binding to and sonopermeation of blood vessels in the brain. Actively targeted rod-shaped MB are generated via 1D stretching of spherical poly(butyl cyanoacrylate) MB and via subsequently functionalizing their shell with antitransferrin receptor (TfR) antibodies. Using US and optical imaging, it is demonstrated that nonspherical anti-TfR-MB bind more efficiently to BBB endothelium than spherical anti-TfR-MB, both in vitro and in vivo. BBB-associated anisotropic MB produce stronger cavitation signals and markedly enhance BBB permeation and delivery of a model drug as compared to spherical BBB-targeted MB. These findings exemplify the potential of antibody-modified nonspherical MB for targeted and triggered drug delivery to the brain.


Assuntos
Barreira Hematoencefálica , Microbolhas , Receptores da Transferrina , Sonicação , Barreira Hematoencefálica/metabolismo , Receptores da Transferrina/metabolismo , Ligantes , Sistemas de Liberação de Medicamentos , Anticorpos , Animais , Camundongos , Feminino , Camundongos Endogâmicos BALB C , Linhagem Celular , Células Endoteliais/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(13): e2218847120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36940339

RESUMO

Surface tension provides microbubbles (MB) with a perfect spherical shape. Here, we demonstrate that MB can be engineered to be nonspherical, endowing them with unique features for biomedical applications. Anisotropic MB were generated via one-dimensionally stretching spherical poly(butyl cyanoacrylate) MB above their glass transition temperature. Compared to their spherical counterparts, nonspherical polymeric MB displayed superior performance in multiple ways, including i) increased margination behavior in blood vessel-like flow chambers, ii) reduced macrophage uptake in vitro, iii) prolonged circulation time in vivo, and iv) enhanced blood-brain barrier (BBB) permeation in vivo upon combination with transcranial focused ultrasound (FUS). Our studies identify shape as a design parameter in the MB landscape, and they provide a rational and robust framework for further exploring the application of anisotropic MB for ultrasound-enhanced drug delivery and imaging applications.


Assuntos
Barreira Hematoencefálica , Microbolhas , Barreira Hematoencefálica/diagnóstico por imagem , Ultrassonografia , Transporte Biológico , Sistemas de Liberação de Medicamentos
7.
ACS Biomater Sci Eng ; 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36315422

RESUMO

Microbubbles (MB) are used as ultrasound (US) contrast agents in clinical settings because of their ability to oscillate upon exposure to acoustic pulses and generate nonlinear responses with a stable cavitation profile. Polymeric MB have recently attracted increasing attention as molecular imaging probes and drug delivery agents based on their tailorable acoustic responses, high drug loading capacity, and surface functionalization capabilities. While many of these applications require MB to be functionalized with biological ligands, the impact of bioconjugation on polymeric MB cavitation and acoustic properties remains poorly understood. Hence, we here evaluated the effects of MB shell hydrolysis and subsequent streptavidin conjugation on the acoustic behavior of poly(butyl cyanoacrylate) (PBCA) MB. We show that upon biofunctionalization, MB display higher acoustic stability, stronger stable cavitation, and enhanced second harmonic generation. Furthermore, functionalized MB preserve the binding capabilities of streptavidin conjugated on their surface. These findings provide insights into the effects of bioconjugation chemistry on polymeric MB acoustic properties, and they contribute to improving the performance of polymer-based US imaging and theranostic agents.

8.
Colloids Surf B Biointerfaces ; 219: 112856, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36150237

RESUMO

Gas-liquid interfaces are reaching a particular interest in biomedicine. Microbubbles, ultrasound contrast agents of clinical routine, gained increasing attention as theranostic platforms due to the preserved acoustic response, drug conjugation capabilities, and applicability in biological barrier opening. A combination of microbubbles and photodynamic therapy agents can enhance the photodynamic effect, yet the evaluation of agent conjugation on microbubble stabilization and photodynamic effect is needed. Hence, two commercially available phthalocyanine photosensitizers - Holosens® (ZnPc) and Photosens® (AlPc) - were coupled with bovine serum albumin before microbubble synthesis. We demonstrated an albumin: phthalocyanine ratio of 1:1 and covalent attachment for ZnPc, a ratio of 1:3 with electrostatic binding for AlPc. Submicron-sized microbubbles (air- and SF6- filled) had a diameter of 0.8 µm. Albumin-phthalocyanine conjugates increased the microbubble concentration and shelf-life stability compared to plain ones. We hypothesized that phthalocyanine fluorescence lifetime values decreased after conjugation with microbubbles due to narrow distance between conjugates in the shell. Agents based on AlPc demonstrated higher photodynamic activity than agents based on ZnPc, and microbubbles preserved acoustic stability in human blood plasma. The biodistribution of AlPc-conjugated microbubbles was evaluated. We conclude that our microbubble platforms demonstrate greater photodynamic activity and prolonged stability for further applications in photodynamic therapy.

9.
ACS Appl Bio Mater ; 5(7): 3338-3348, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35791763

RESUMO

Microbubbles are routinely used ultrasound contrast agents in the clinic. While a soft protein shell is commercially preferable for imaging purposes, a rigid polymer shell demonstrates prolonged agent stability. Hence, combining polymers and proteins in one shell composition can advance microbubble properties. We formulated the hybrid "protein-copolymer" microbubble shell with a complex of bovine serum albumin and an amphiphilic copolymer of N-vinyl-2-pyrrolidone and acrylic acid. The resulting microbubbles demonstrated advanced physicochemical and acoustic properties, preserving in vitro biocompatibility. Adjusting the mass ratio between protein and copolymer allowed fine tuning of the microbubble properties of concentration (by two orders, up to 1010 MBs/mL), mean size (from 0.8 to 5 µm), and shell thickness (from 28 to 50 nm). In addition, the minimum air-liquid surface tension for the "protein-copolymer" solution enabled the highest bubble concentration. At the same time, a higher copolymer amount in the bubble shell increased the bubble size and tuned duration and intensity of the contrast during an ultrasound procedure. Demonstrated results exemplify the potential of the hybrid "protein-polymer" microbubble shell, allowing tailoring of microbubble properties for image-guided applications, combining advances of each material involved in the formulation.


Assuntos
Meios de Contraste , Microbolhas , Acrilatos , Resinas Acrílicas , Meios de Contraste/química , Polímeros/química , Povidona/análogos & derivados , Soroalbumina Bovina
10.
Mol Pharm ; 19(9): 3256-3266, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35905480

RESUMO

Gas-filled microbubbles (MB) are routinely used in the clinic as ultrasound contrast agents. MB are also increasingly explored as drug delivery vehicles based on their ultrasound stimuli-responsiveness and well-established shell functionalization routes. Broadening the range of MB properties can enhance their performance in both imaging and drug delivery applications. This can be promoted by systematically varying the reagents used in the synthesis of MB, which in the case of polymeric MB include surfactants. We therefore set out to study the effect of key surfactant characteristics, such as the chemical structure, molecular weight, and hydrophilic-lipophilic balance on the formation of poly(butyl cyanoacrylate) (PBCA) MB, as well as on their properties, including shell thickness, drug loading capacity, ultrasound contrast, and acoustic stability. Two different surfactant families (i.e., Triton X and Tween) were employed, which show opposite molecular weight vs hydrophilic-lipophilic balance trends. For both surfactant types, we found that the shell thickness of PBCA MB increased with higher-molecular-weight surfactants and that the resulting MB with thicker shells showed higher drug loading capacities and acoustic stability. Furthermore, the higher proportion of smaller polymer chains of the Triton X-based MB (as compared to those of the Tween-based ones) resulted in lower polymer entanglement, improving drug loading capacity and ultrasound contrast response. These findings open up new avenues to fine-tune the shell properties of polymer-based MB for enhanced ultrasound imaging and drug delivery applications.


Assuntos
Microbolhas , Tensoativos , Acústica , Meios de Contraste/química , Humanos , Octoxinol , Preparações Farmacêuticas , Polímeros/química , Polissorbatos , Tensoativos/química
11.
Pharmaceutics ; 14(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35745808

RESUMO

Ultrasound is a widely-used imaging modality in clinics as a low-cost, non-invasive, non-radiative procedure allowing therapists faster decision-making. Microbubbles have been used as ultrasound contrast agents for decades, while recent attention has been attracted to consider them as stimuli-responsive drug delivery systems. Pioneering microbubbles were Albunex with a protein shell composed of human serum albumin, which entered clinical practice in 1993. However, current research expanded the set of proteins for a microbubble shell beyond albumin and applications of protein microbubbles beyond ultrasound imaging. Hence, this review summarizes all-known protein microbubbles over decades with a critical evaluation of formulations and applications to optimize the safety (low toxicity and high biocompatibility) as well as imaging efficiency. We provide a comprehensive overview of (1) proteins involved in microbubble formulation, (2) peculiarities of preparation of protein stabilized microbubbles with consideration of large-scale production, (3) key chemical factors of stabilization and functionalization of protein-shelled microbubbles, and (4) biomedical applications beyond ultrasound imaging (multimodal imaging, drug/gene delivery with attention to anticancer treatment, antibacterial activity, biosensing). Presented critical evaluation of the current state-of-the-art for protein microbubbles should focus the field on relevant strategies in microbubble formulation and application for short-term clinical translation. Thus, a protein bubble-based platform is very perspective for theranostic application in clinics.

12.
Micromachines (Basel) ; 12(10)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34683212

RESUMO

Microbubbles are intravascular contrast agents clinically used in diagnostic sonography, echocardiography, and radiology imaging applications. However, up to date, the idea of creating microbubbles with multiple functionalities (e.g., multimodal imaging, photodynamic therapy) remained a challenge. One possible solution is the modification of bubble shells by introducing specific compounds responsible for such functions. In the present work, air-core microbubbles with the shell consisting of bovine serum albumin, albumin-coated gold nanocages, and zinc phthalocyanine were prepared using the sonication method. Various physicochemical parameters such as stability over time, size, and concentration were investigated to prove the potential use of these microbubbles as contrast agents. This work shows that hybrid microbubbles have all the necessary properties for multimodal imaging (ultrasound, raster-scanning microscopy, and fluorescence tomography), which demonstrate superior characteristics for potential theranostic and related biomedical applications.

13.
Adv Mater ; 33(22): e2007465, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33893682

RESUMO

Wireless nano-/micromotors powered by chemical reactions and/or external fields generate motive forces, perform tasks, and significantly extend short-range dynamic responses of passive biomedical microcarriers. However, before micromotors can be translated into clinical use, several major problems, including the biocompatibility of materials, the toxicity of chemical fuels, and deep tissue imaging methods, must be solved. Nanomaterials with enzyme-like characteristics (e.g., catalase, oxidase, peroxidase, superoxide dismutase), that is, nanozymes, can significantly expand the scope of micromotors' chemical fuels. A convergence of nanozymes, micromotors, and microfluidics can lead to a paradigm shift in the fabrication of multifunctional micromotors in reasonable quantities, encapsulation of desired subsystems, and engineering of FDA-approved core-shell structures with tuneable biological, physical, chemical, and mechanical properties. Microfluidic methods are used to prepare stable bubbles/microbubbles and capsules integrating ultrasound, optoacoustic, fluorescent, and magnetic resonance imaging modalities. The aim here is to discuss an interdisciplinary approach of three independent emerging topics: micromotors, nanozymes, and microfluidics to creatively: 1) embrace new ideas, 2) think across boundaries, and 3) solve problems whose solutions are beyond the scope of a single discipline toward the development of micro-bio-chemo-mechanical-systems for diverse bioapplications.


Assuntos
Microfluídica , Nanoestruturas , Microbolhas
14.
ACS Omega ; 6(5): 3809-3821, 2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33585760

RESUMO

Liquid/surfactant/gas interfaces are promising objects for nanoengineered multimodal contrasts, which can be used for biomedical imaging in preclinical and clinical applications. Microbubbles with the gaseous core and shell made of lipids/proteins have already acted as ultrasound (US) contrast agents for angiography. In the present work, microbubbles with a shell composed of Span 60 and Tween 80 surfactants functionalized with fluorescein isothiocyanate and gold nanorods to achieve a multimodal combination of US, fluorescence, and optoacoustic imaging are described. Optimal conditions for microbubble generation by studying the surface tension of the initial solutions and analyzing the size, stability, and charge of the resulting bubbles were found. By controlling and modifying bubbles' surface properties, an increase in stability and storage time can be achieved. The functionalization of bubbles with gold nanoparticles and a dye by using an optimally selected sonication protocol was performed. The biomedical application's potential in imaging modalities of functionalized microbubbles using a medical US device with a frequency of 50 MHz, fluorescence tomography, and raster-scanning optoacoustic mesoscopy measurements was evaluated. The obtained results are important for optimum stabilization and functionalization of gas/liquid interfaces and the following applications in the multimodal biomedical imaging.

15.
Nanomaterials (Basel) ; 11(2)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562017

RESUMO

Microbubbles have already reached clinical practice as ultrasound contrast agents for angiography. However, modification of the bubbles' shell is needed to produce probes for ultrasound and multimodal (fluorescence/photoacoustic) imaging methods in combination with theranostics (diagnostics and therapeutics). In the present work, hybrid structures based on microbubbles with an air core and a shell composed of bovine serum albumin, albumin-coated gold nanoparticles, and clinically available photodynamic dyes (zinc phthalocyanine, indocyanine green) were shown to achieve multimodal imaging for potential applications in photodynamic therapy. Microbubbles with an average size of 1.5 ± 0.3 µm and concentration up to 1.2 × 109 microbubbles/mL were obtained and characterized. The introduction of the dye into the system reduced the solution's surface tension, leading to an increase in the concentration and stability of bubbles. The combination of gold nanoparticles and photodynamic dyes' influence on the fluorescent signal and probes' stability is described. The potential use of the obtained probes in biomedical applications was evaluated using fluorescence tomography, raster-scanning optoacoustic microscopy and ultrasound response measurements using a medical ultrasound device at the frequency of 33 MHz. The results demonstrate the impact of microbubbles' stabilization using gold nanoparticle/photodynamic dye hybrid structures to achieve probe applications in theranostics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...